

Please write clearly in	block capitals.
Centre number	Candidate number
Surname	
Forename(s)	
Candidate signature	I declare this is my own work.

A-level BIOLOGY

Paper 3

Time allowed: 2 hours

Materials

For this paper you must have:

- a ruler with millimetre measurements
- a scientific calculator.

Instructions

- Use black ink or black ball-point pen.
- Fill in the boxes at the top of this page.
- Answer all questions in Section A.
- Answer one question from Section B.
- You must answer the questions in the spaces provided. Do not write outside the box around each page or on blank pages.
- If you need extra space for your answer(s), use the lined pages at the end of this book. Write the question number against your answer(s).
- Show all your working.
- Do all rough work in this book. Cross through any work you do not want to be marked.

Information

- The marks for the questions are shown in brackets.
- The maximum mark for this paper is 78.

For Examiner's Use		
Question	Mark	
1		
2		
3		
4		
5		
6		
7		
TOTAL		

Section A

Answer **all** questions in this section.

You are advised to spend no more than 1 hour and 15 minutes on this section.

In one species of squirrel, *Sciurus carolinensis*, fur colour is controlled by one gene, with two codominant alleles. **C**^G represents the allele for grey fur colour, and **C**^B represents the allele for black fur colour.

 Table 1 shows the three possible phenotypes.

Table 1	
---------	--

Genotype	Phenotype	
C ^G C ^G	Grey fur	
C ^G C ^B	Brown-black fur	
C ^B C ^B	Black fur	

0 1.1

0 1

In a population of 34 S. carolinensis, 2 had black fur.

Use the Hardy–Weinberg equation to estimate how many squirrels in this population had brown-black fur. Show your working.

[2 marks]

Do not write outside the

box

Answer

		, , , , , , , , , , , , , , , , , , ,		Do not wi outside ti
0 1 . 2	The	actual number of squirrels in this population that had brown-black	tur was 16.	DOX
	Use	all of the information to calculate the actual frequency of the C ^G a	llele.	
	Do r	not use the Hardy–Weinberg equation in your calculation.		
	Give	your answer to 2 decimal places.	[1 mark]	
			[]	
		Answer		
0 1.3	S. ca They	a <i>rolinensis</i> were first introduced to the UK from North America in th y are now widely distributed across the UK.	ne 1870s.	
	<i>S. carolinensis</i> from both North America and the UK show exactly the same genotype and phenotypic variation. An identical mutation causing black fur has also been fou in several other species closely related to <i>S. carolinensis</i> .			
	Use this information to deduce which one of the following conclusions is most likely true. Tick (\checkmark) one box.			
			[1 mark]	
	Α	The mutation that caused black fur happened after <i>S. carolinensis</i> was introduced to the UK from North America.		
	в	The mutation that caused black fur happened in a common ancestor of <i>S. carolinensis</i> and other closely related species.		
	С	The mutation that caused black fur happened independently in <i>S. carolinensis</i> and all other closely related species.		
	D	The phenotypic variation shown in <i>S. carolinensis</i> and other closely related species is caused by genetic drift.		
		Question 1 continues on the next page		

		Do not write
	The deletion mutation in the $\mathbf{C}^{\mathbf{B}}$ allele results in the production of a receptor protein that does not have glutamic acid. The lack of glutamic acid in the receptor protein has the same effect as α MSH leaving the receptor protein.	outside the box
0 1.5	Use Figure 1 and this information to suggest why <i>S. carolinensis</i> with the genotype $C^{B}C^{B}$ have black fur rather than grey fur.	
		9
	Turn over for the next question	
	Turn over ▶	•

		Do not write
02.1	Describe how the human immunodeficiency virus (HIV) is replicated once inside	outside the box
	helper T cells (T _H cells). [4 marks]	

		Do not write
	HIV-1 is the most common type of HIV. HIV-1 binds to a receptor on $T_{\rm H}$ cells called CCR5.	outside the box
	Current treatment for HIV-1 involves the use of daily antiretroviral therapy (ART) to stop the virus being replicated. Only 59% of HIV-positive individuals have access to ART.	
	Scientists have found that two HIV-1-positive patients (P and Q) have gone into remission (have no detectable HIV-1). This happened after a blood stem cell transplant (BSCT).	
	 Patient P was given two BSCTs, and patient Q was given one BSCT. All BSCTs came from a donor with T_H cells without the CCR5 receptor. In addition, patient P had radiotherapy, and patient Q had chemotherapy. Both of these treatments are toxic. 	
	 Both patients (P and Q) stopped receiving ART 16 months after BSCT. 	
	18 months after stopping ART, both patients had no HIV-1 RNA in their plasma, no HIV-1 DNA in their T_H cells and no CCR5 on their T_H cells.	
02.2	Use the information given to evaluate the use of BSCT to treat HIV infections. [5 marks]	
		9

IB/H/Jun21/7402/3

At higher temperatures and higher light intensities, adult pine beetles normally

- move more
- fly rather than walk.

When preparing to fly, these adult beetles walk slowly. The scientists investigated the movement of adult beetles at different temperatures, and in the light and the dark. They created a box that was half in the light and half in the dark. They released an adult beetle at the midpoint of the central dividing line between light and dark areas. They recorded the path of the beetle's movement and its location after 5 minutes. From this, they calculated the mean speed of movement. They repeated the experiment with many beetles and at several temperatures.

Figure 3 shows the scientists' results.

Do not write outside the

box

			Do not write outside the
0 3 2	After studying these experiments, a student concluded:		box
	 there is a significant change in movement between 35 °C and 37.5 °C between 35 °C and 37.5 °C, more beetles move away from the light between 35 °C and 37.5 °C, more beetles have a slower walking speed. 		
	Suggest reasons why these conclusions might not be valid		
	Suggest reasons why these conclusions might not be valid.	[3 marks]	
			5
	Turn over for the next question		
		iurn over •	

		Do not
0 4	Freshwater marshes have one of the highest rates of gross primary production (<i>GPP</i>) and net primary production (<i>NPP</i>) of all ecosystems.	outsid bo
	Carbon use efficiency (<i>CUE</i>) is the ratio of <i>NPP:GPP</i> . Freshwater marshes have a high <i>CUE</i> .	
04.1	Use your knowledge of <i>NPP</i> to explain why freshwater marshes have a high <i>CUE</i> and the advantage of this.	
	Do not refer to abiotic factors in your answer. [2 marks]	
	Explanation	
	Advantage	
04.2	Freshwater marsh soils are normally waterlogged. This creates anaerobic conditions.	
	Use your knowledge of the nitrogen cycle to suggest why these soils contain relatively high concentrations of ammonium compounds and low concentrations of nitrite ions and nitrate ions.	
	[2 marks]	

	A student investigated the growth rate of a freeby-stor march plant	Do not write outside the
	A student investigated the growth rate of a freshwater marsh plant. The growth rate (R) of a plant can be determined using this equation	DOX
	The growth rate (R) of a plant can be determined using this equation.	
	$R = \frac{(\ln W_2 - \ln W_1)}{t}$	
	Where In = natural logarithm t = duration of the investigation in days W_1 = plant biomass at the start of the investigation W_2 = plant biomass at the end of the investigation	
	The student used the equation above; however, she substituted height for biomass. This was because she did not want to destroy the plants to measure their biomass.	
04.3	State the assumption the student has made and suggest why this assumption might not be valid.	
	[2 marks]	
04.4	At the end of the investigation, the student noted the freshwater marsh plant had grown 268 mm in height, and now measured 387 mm. She calculated the rate of growth (<i>R</i>) to be 0.097 mm m ^{-1} day ^{-1}	
	Use this information and, substituting height for biomass , use the equation to calculate the duration of the student's investigation.	
	Give your answer to the nearest full day. Show your working. [2 marks]	
	days	8
]

0 5.1	The action of endopeptidases and exopeptidases can increase the rate of protei digestion. Describe how. [2 r					
0 5.2	As humans age, there is a decreas	e in body protein.				
	Give the name of one body protein that could have resulted in: [2 ma					
	reduced muscle power					
	reduced immunity					
	Scientists investigated the effect of men to produce body proteins. Table 2 shows information about the statement of the st	two types of dietary p ne two types of dietary	protein on the ability v protein investigate	of old d.		
		Table 2				
	Physical gradient factor	Name of dietary protein				
		Casein	Whey			
	Rate of absorption of dietary protein / mmol dm ⁻³ amino acids in blood plasma h ⁻¹	3.05	4.33			
	Stimulation of protein synthesis	Higher rate	Lower rate			
	Breakdown of body proteins	No effect	Inhibitory effect			

Do not write outside the box

	Figure 4 shows the percentage of protein absorbed that becomes body protein in old men following a meal of casein or whey.	Do not write outside the box
	Figure 4	
	Percentage of protein absorbed that becomes body protein 60 - 0 Casein Whey	
	A statistical test confirmed that the difference between the results shown in Figure 4 was significant.	
0 5.3	Suggest which type of dietary protein would be better for old men to eat to cause a net gain of body proteins. Use the information provided to explain your answer. [3 marks]	
		7
	Turn over I	 ▶

		Do
06	Plants transport sucrose from leaves to other tissues for growth and storage. SUT1 is a sucrose co-transporter protein.	out
	Scientists investigated whether the cells of tobacco plant leaves used SUT1 to transport sucrose to other tissues.	
0 6.1	The scientists used a radioactively labelled DNA probe to show that the cells of tobacco plant leaves contained the <i>SUT1</i> gene.	
	Describe how they would do this.	
	Do not include PCR in your answer. [4 marks]	

		Do not w
06.2	To study the role of SUT1 in tobacco plants, scientists reduced the expression of the <i>SUT1</i> gene.	outside ti box
	When the <i>SUT1</i> gene is transcribed, the SUT1 mRNA produced is called 'sense' SUT1 mRNA. The scientists genetically modified plants by inserting an extra gene so that this also allowed the production of 'antisense' SUT1 mRNA.	
	The scientists had two types of tobacco plants:	
	 type A – plants that were genetically modified type B – plants that were not genetically modified. 	
	Suggest how the production of 'antisense' SUT1 mRNA in type A plants would reduce the expression of the SUT1 gene	
	[4 marks]	
	Question 6 continues on the next page	

06.3

The scientists hypothesised that lower rates of sucrose transport from leaves would cause reduced growth.

To test this hypothesis, the scientists provided leaves of type **A** and type **B** plants with labelled carbon dioxide (${}^{14}CO_2$). To estimate sucrose transport out of leaves, they measured the percentage of ${}^{14}C$ remaining in the leaves for 16 hours.

Figure 5 shows their results.

Calculate the ratio of percentage of ¹⁴C remaining in leaves of type **B** to type **A** plants 16 hours after providing ¹⁴CO₂

[1 mark]

Do not write outside the

box

Answer

06.4	In type B plants, the percentage of ¹⁴ C remaining in the leaves does not reach zero per cent, as shown in Figure 5 .	Do not write outside the box
	Suggest two reasons why. [2 marks]	
	2	

Question 6 continues on the next page

IB/H/Jun21/7402/3

Do not write outside the box

The scientists measured physiological differences between type A plants and type **B** plants.

Table 3 shows the scientists' results as they presented them.

Dhuaialagiaal factor	Type of tobacco plant			
	Туре А	Туре В		
Rate of sucrose transport from leaf cells / μ mol m ⁻² s ⁻¹	0.1	3.7		
Leaf sucrose concentration / mmol m ⁻²	22	4		
Ratio of shoot:root dry mass	6:1	2:1		

4

14

Table 3

		II	
2	(0	

Rate of photosynthesis /

 μ mol glucose m⁻² s⁻¹

	Sucrose is able to inhibit the production and activity of rubisco in leaves of a plant.	Do not write outside the box
	Type A plants have decreased dry mass compared with type B plants.	
06.5	Use all the information to suggest and explain how the physiological factors in Table 3 would contribute to the decreased dry mass observed in type A plants. [4 marks]	
		15
	Turn over for Section B	
I	Turn over I	•

	Contian P	
	Answer one question.	
	You are advised to spend no more than 45 minutes on this section.	
0 7	Write an essay on one of the topics below.	
Either		
0 7.1	The importance of complementary shapes of molecules in organisms	[25 marks]
Or		
0 7.2	The importance of ions in metabolic processes	[25 marks]

IB/H/Jun21/7402/3

Turn over ►

Turn over ►

Turn over ►

-	END OF QUESTIONS

Question number	Additional page, if required. Write the question numbers in the left-hand margin.

Question number	Additional page, if required. Write the question numbers in the left-hand margin.

Question number	Additional page, if required. Write the question numbers in the left-hand margin.
	Copyright information
	For confidentiality purposes, all acknowledgements of third-party copyright material are published in a separate booklet. This booklet is published after each live examination series and is available for free download from www.aqa.org.uk.
	Permission to reproduce all copyright material has been applied for. In some cases, efforts to contact copyright-holders may have been unsuccessful and AQA will be happy to rectify any omissions of acknowledgements. If you have any queries please contact the Copyright Team.
	Copyright © 2021 AQA and its licensors. All rights reserved.

